{ "id": "0705.4142", "version": "v1", "published": "2007-05-29T05:02:19.000Z", "updated": "2007-05-29T05:02:19.000Z", "title": "Specht modules and semisimplicity criteria for Brauer and Birman--Murakami--Wenzl Algebras", "authors": [ "John Enyang" ], "doi": "10.1007/s10801-007-0058-3", "categories": [ "math.RT" ], "abstract": "A construction of bases for cell modules of the Birman--Murakami--Wenzl (or B--M--W) algebra $B_n(q,r)$ by lifting bases for cell modules of $B_{n-1}(q,r)$ is given. By iterating this procedure, we produce cellular bases for B--M--W algebras on which a large abelian subalgebra, generated by elements which generalise the Jucys--Murphy elements from the representation theory of the Iwahori--Hecke algebra of the symmetric group, acts triangularly. The triangular action of this abelian subalgebra is used to provide explicit criteria, in terms of the defining parameters $q$ and $r$, for B--M--W algebras to be semisimple. The aforementioned constructions provide generalisations, to the algebras under consideration here, of certain results from the Specht module theory of the Iwahori--Hecke algebra of the symmetric group.", "revisions": [ { "version": "v1", "updated": "2007-05-29T05:02:19.000Z" } ], "analyses": { "keywords": [ "birman-murakami-wenzl algebras", "semisimplicity criteria", "b-m-w algebras", "iwahori-hecke algebra", "symmetric group" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0705.4142E" } } }