{ "id": "0705.4060", "version": "v2", "published": "2007-05-28T15:57:34.000Z", "updated": "2015-07-08T11:46:06.000Z", "title": "C*- Algebras and Thermodynamic Formalism", "authors": [ "Ruy Exel", "Artur O. Lopes" ], "comment": "version updated", "categories": [ "math.DS", "math.OA" ], "abstract": "We present a detailed exposition (for a Dynamical System audience) of the content of the paper: R. Exel and A. Lopes, $C^*$ Algebras, approximately proper equivalence relations and Thermodynamic Formalism, {\\it Erg. Theo. and Dyn. Syst.}, Vol 24, pp 1051-1082 (2004). We show only the uniqueness of the \\beta-KMS (in a certain C*-Algebra obtained from the operators acting in $L^2$ of a Gibbs invariant probability $\\mu$) and its relation with the eigen-probability $\\nu_\\beta$ for the dual of a certain Ruele operator. We consider an example for a case of Hofbauer type where there exist a Phase transition for the Gibbs state. There is no Phase transition for the KMS state.", "revisions": [ { "version": "v1", "updated": "2007-05-28T15:57:34.000Z", "comment": null, "journal": null, "doi": null }, { "version": "v2", "updated": "2015-07-08T11:46:06.000Z" } ], "analyses": { "subjects": [ "37A55", "37D35" ], "keywords": [ "thermodynamic formalism", "phase transition", "approximately proper equivalence relations", "gibbs invariant probability", "kms state" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0705.4060E" } } }