{ "id": "0705.3891", "version": "v2", "published": "2007-05-26T11:41:45.000Z", "updated": "2007-06-14T17:44:16.000Z", "title": "Renormalization flow for unrooted forests on a triangular lattice", "authors": [ "Sergio Caracciolo", "Claudia De Grandi", "Andrea Sportiello" ], "comment": "26 pages, 4 figures", "journal": "Nucl.Phys.B787:260-282,2007", "doi": "10.1016/j.nuclphysb.2007.06.012", "categories": [ "cond-mat.stat-mech", "hep-lat" ], "abstract": "We compute in small temperature expansion the two-loop renormalization constants and the three-loop coefficient of the beta-function, that is the first non-universal term, for the sigma-model with O(N) invariance on the triangular lattice at N=-1. The partition function of the corresponding Grassmann theory is, for negative temperature, the generating function of unrooted forests on such a lattice, where the temperature acts as a chemical potential for the number of trees in the forest. To evaluate Feynman diagrams we extend the coordinate space method to the triangular lattice.", "revisions": [ { "version": "v2", "updated": "2007-06-14T17:44:16.000Z" } ], "analyses": { "keywords": [ "triangular lattice", "unrooted forests", "renormalization flow", "two-loop renormalization constants", "coordinate space method" ], "tags": [ "journal article" ], "publication": { "publisher": "Elsevier", "journal": "Nuclear Physics B", "year": 2007, "month": "Dec", "volume": 787, "number": 3, "pages": 260 }, "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable", "inspire": 752795, "adsabs": "2007NuPhB.787..260C" } } }