{ "id": "0705.3812", "version": "v3", "published": "2007-05-25T17:27:29.000Z", "updated": "2010-07-14T10:02:38.000Z", "title": "Dynamics of the Teichmueller flow on compact invariant sets", "authors": [ "Ursula Hamenstaedt" ], "comment": "Final version", "categories": [ "math.DS" ], "abstract": "Let Q(S) be the moduli space of area one holomorphic quadratic differentials for an oriented surface S of genus g with m punctures and 3g-3+m>1. We show that the supremum over all compact subsets K of Q(S) of the asymptotic growth rate of the number of periodic orbits of the Teichmueller flow which are contained in K equals h=6g-6+2m. Moreover, h is also the supremum of the topological entropies of the restriction of the Teichmueller flow to compact invariant subsets of Q(S).", "revisions": [ { "version": "v3", "updated": "2010-07-14T10:02:38.000Z" } ], "analyses": { "subjects": [ "37A20", "30F60" ], "keywords": [ "compact invariant sets", "teichmueller flow", "compact invariant subsets", "asymptotic growth rate", "holomorphic quadratic differentials" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0705.3812H" } } }