{ "id": "0705.3372", "version": "v2", "published": "2007-05-23T13:34:35.000Z", "updated": "2007-11-14T04:18:05.000Z", "title": "Rings of integers of type $K(π,1)$", "authors": [ "Alexander Schmidt" ], "comment": "final version, to appear in documenta mathematica", "categories": [ "math.NT" ], "abstract": "We investigate the Galois group $G_S(p)$ of the maximal $p$-extension unramified outside a finite $S$ of primes of a number field in the (tame) case, when no prime dividing $p$ is in $S$. We show that the cohomology of $G_S(p)$ is 'often' isomorphic to the etale cohomology of the scheme $\\Spec(\\O_k \\sm S)$, in particular, $G_S(p)$ is of cohomological dimension~2 then.", "revisions": [ { "version": "v2", "updated": "2007-11-14T04:18:05.000Z" } ], "analyses": { "subjects": [ "11R34", "12G10" ], "keywords": [ "galois group", "extension unramified outside", "number field", "etale cohomology", "isomorphic" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0705.3372S" } } }