{ "id": "0705.2268", "version": "v2", "published": "2007-05-16T13:33:39.000Z", "updated": "2008-04-12T14:31:26.000Z", "title": "Real interpoaltion of Sobolev spaces associated to a weight", "authors": [ "Nadine Badr" ], "comment": "25 pages", "categories": [ "math.FA", "math.MG" ], "abstract": "We study the interpolation property of Sobolev spaces of order 1 denoted by $W^{1}_{p,V}$, arising from Schr\\\"{o}dinger operators with positive potential. We show that for $1\\leq p_1
s_0$, $W^{1}_{p,V}$ is a real interpolation space between $W_{p_1,V}^{1}$ and $W_{p_2,V}^{1}$ on some classes of manifolds and Lie groups. The constants $s_{0}, q_{0}$ depend on our hypotheses.", "revisions": [ { "version": "v2", "updated": "2008-04-12T14:31:26.000Z" } ], "analyses": { "subjects": [ "46B70", "35J10" ], "keywords": [ "sobolev spaces", "real interpoaltion", "real interpolation space", "lie groups", "interpolation property" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0705.2268B" } } }