{ "id": "0705.1687", "version": "v1", "published": "2007-05-11T16:18:08.000Z", "updated": "2007-05-11T16:18:08.000Z", "title": "Existence results for mean field equations with turbulence", "authors": [ "Cheikh Birahim Ndiaye" ], "categories": [ "math.AP" ], "abstract": "In this paper we consider the following form of the so-called Mean field equation arising from the statistical mechanics description of two dimensional turbulence \\begin{equation}\\label{eq:study} - \\D_g u = \\rho_1 (\\frac{e^{u}}{\\int_\\Sig e^{u} dV_g}-1)-\\rho_2 (\\frac{e^{-u}}{\\int_\\Sig e^{-u} dV_g} - 1) \\end{equation} on a given closed orientable Riemannian surface ($\\Sigma, g$) with volume 1, where $\\rho_1, \\rho_2$ are real parameters. Exploiting the variational structure of the problem and running a min-max scheme introduced by Djadli and Malchiodi, we prove that if $k$ is a positive integer, $\\rho_1$ and $\\rho_2$ two real numbers such that $\\rho_1\\in (8k\\pi, 8(k+1)\\pi)$ and $\\rho_2<4\\pi$ then $\\eqref{eq:study}$ is solvable.", "revisions": [ { "version": "v1", "updated": "2007-05-11T16:18:08.000Z" } ], "analyses": { "keywords": [ "existence results", "mean field equation arising", "real numbers", "variational structure", "min-max scheme" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0705.1687B" } } }