{ "id": "0705.1451", "version": "v1", "published": "2007-05-10T12:18:38.000Z", "updated": "2007-05-10T12:18:38.000Z", "title": "Homotopy Lie algebra of the complements of subspace arrangements with geometric lattices", "authors": [ "G. Debongnie" ], "comment": "9 pages", "categories": [ "math.AT" ], "abstract": "Let A be a geometric arrangement such that codim(x) > 1 for every x in A. We prove that, if the complement space M(A) is rationally hyperbolic, then there exists an injective from a free Lie algebra L(u,v) to the homotopy Lie algebra of M(A).", "revisions": [ { "version": "v1", "updated": "2007-05-10T12:18:38.000Z" } ], "analyses": { "subjects": [ "55P62" ], "keywords": [ "homotopy lie algebra", "subspace arrangements", "geometric lattices", "free lie algebra", "complement space" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0705.1451D" } } }