{ "id": "0705.0715", "version": "v1", "published": "2007-05-04T22:49:01.000Z", "updated": "2007-05-04T22:49:01.000Z", "title": "Sum-product estimates via directed expanders", "authors": [ "Van Vu" ], "categories": [ "math.CO", "math.NT" ], "abstract": "Let $\\F_q$ be a finite field of order $q$ and $P$ be a polynomial in $\\F_q[x_1, x_2]$. For a set $A \\subset \\F_q$, define $P(A):=\\{P(x_1, x_2) | x_i \\in A \\}$. Using certain constructions of expanders, we characterize all polynomials $P$ for which the following holds \\vskip2mm \\centerline{\\it If $|A+A|$ is small, then $|P(A)|$ is large.} \\vskip2mm The case $P=x_1x_2$ corresponds to the well-known sum-product problem.", "revisions": [ { "version": "v1", "updated": "2007-05-04T22:49:01.000Z" } ], "analyses": { "keywords": [ "sum-product estimates", "directed expanders", "well-known sum-product problem", "polynomial", "finite field" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0705.0715V" } } }