{ "id": "0705.0144", "version": "v1", "published": "2007-05-01T17:18:32.000Z", "updated": "2007-05-01T17:18:32.000Z", "title": "Formality of function spaces", "authors": [ "Micheline Vigué-Poirrier" ], "comment": "8 pages", "categories": [ "math.AT" ], "abstract": "Let $X$ be a nilpotent space such that there exists $p\\geq 1$ with $H^p(X,\\mathbb Q) \\ne 0$ and $H^n(X,\\mathbb Q)=0$ if $n>p$. Let $Y$ be a m-connected space with $m\\geq p+1$ and $H^*(Y,\\mathbb Q)$ is finitely generated as algebra. We assume that $X$ is formal and there exists $p$ odd such that $H^p(X,\\mathbb Q) \\ne 0$. We prove that if the space $\\mathcal F(X,Y)$ of continuous maps from $X$ to $Y$ is formal, then $Y$ has the rational homotopy type of a product of Eilenberg Mac Lane spaces. At the opposite, we exhibit an example of a formal space $\\mathcal F(S^2,Y)$ where $Y$ is not rationally equivalent to a product of Eilenberg Mac Lane spaces.", "revisions": [ { "version": "v1", "updated": "2007-05-01T17:18:32.000Z" } ], "analyses": { "subjects": [ "55P62", "55P35" ], "keywords": [ "function spaces", "eilenberg mac lane spaces", "rational homotopy type", "nilpotent space", "formal space" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0705.0144V" } } }