{ "id": "0704.3911", "version": "v1", "published": "2007-04-30T09:55:50.000Z", "updated": "2007-04-30T09:55:50.000Z", "title": "Distal actions and ergodic actions on compact groups", "authors": [ "C. R. E. Raja" ], "categories": [ "math.DS" ], "abstract": "Let $K$ be a compact metrizable group and $\\Ga$ be a group of automorphisms of $K$. We first show that each $\\ap \\in \\Ga$ is distal on $K$ implies $\\Ga$ itself is distal on $K$, a local to global correspondence provided $\\Ga$ is a generalized $\\ov{FC}$-group or $K$ is a connected finite-dimensional group. We show that $\\Ga$ contains an ergodic automorphism when $\\Ga$ is nilpotent and ergodic on a connected finite-dimensional compact abelian group $K$.", "revisions": [ { "version": "v1", "updated": "2007-04-30T09:55:50.000Z" } ], "analyses": { "subjects": [ "37B05", "37A15", "22B05", "22C05" ], "keywords": [ "compact groups", "ergodic actions", "distal actions", "connected finite-dimensional compact abelian group", "finite-dimensional group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0704.3911R" } } }