{ "id": "0704.2199", "version": "v4", "published": "2007-04-17T17:00:46.000Z", "updated": "2008-02-19T16:40:29.000Z", "title": "Equilibrium states for interval maps: the potential $-t\\log |Df|$", "authors": [ "Henk Bruin", "Mike Todd" ], "journal": "Ann. Sci. Ecole Norm. Sup. (4) 42 (2009) 559-600.", "categories": [ "math.DS" ], "abstract": "Let $f:I \\to I$ be a $C^2$ multimodal interval map satisfying polynomial growth of the derivatives along critical orbits. We prove the existence and uniqueness of equilibrium states for the potential $\\phi_t:x\\mapsto -t\\log|Df(x)|$ for $t$ close to 1, and also that the pressure function $t \\mapsto P(\\phi_t)$ is analytic on an appropriate interval near $t = 1$.", "revisions": [ { "version": "v4", "updated": "2008-02-19T16:40:29.000Z" } ], "analyses": { "subjects": [ "37D35", "37D25", "37E05" ], "keywords": [ "equilibrium states", "multimodal interval map satisfying polynomial", "interval map satisfying polynomial growth", "appropriate interval", "pressure function" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0704.2199B" } } }