{ "id": "0704.1977", "version": "v1", "published": "2007-04-16T15:27:45.000Z", "updated": "2007-04-16T15:27:45.000Z", "title": "The Jumping Phenomenon of Hodge Numbers", "authors": [ "Xuanming Ye" ], "categories": [ "math.AG", "math.DG" ], "abstract": "Let $X$ be a compact complex manifold, consider a small deformation $\\phi: \\mathcal{X} \\to B$ of $X$, the dimension of the Dolbeault cohomology groups $H^q(X_t,\\Omega_{X_t}^p)$ may vary under this defromation. This paper will study such phenomenons by studying the obstructions to deform a class in $H^q(X,\\Omega_X^p)$ with the parameter $t$ and get the formula for the obstructions.", "revisions": [ { "version": "v1", "updated": "2007-04-16T15:27:45.000Z" } ], "analyses": { "keywords": [ "hodge numbers", "jumping phenomenon", "compact complex manifold", "dolbeault cohomology groups", "small deformation" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0704.1977Y" } } }