{ "id": "0704.0876", "version": "v1", "published": "2007-04-06T11:15:47.000Z", "updated": "2007-04-06T11:15:47.000Z", "title": "Non-monotone convergence in the quadratic Wasserstein distance", "authors": [ "Walter Schachermayer", "Uwe Schmock", "Josef Teichmann" ], "categories": [ "math.PR" ], "abstract": "We give an easy counter-example to Problem 7.20 from C. Villani's book on mass transport: in general, the quadratic Wasserstein distance between $n$-fold normalized convolutions of two given measures fails to decrease monotonically.", "revisions": [ { "version": "v1", "updated": "2007-04-06T11:15:47.000Z" } ], "analyses": { "subjects": [ "60B10" ], "keywords": [ "quadratic wasserstein distance", "non-monotone convergence", "villanis book", "mass transport", "fold normalized convolutions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0704.0876S" } } }