{ "id": "0704.0501", "version": "v3", "published": "2007-04-04T17:51:21.000Z", "updated": "2007-05-15T18:18:55.000Z", "title": "On universality of critical behaviour in the focusing nonlinear Schrödinger equation, elliptic umbilic catastrophe and the {\\it tritronquée} solution to the Painlevé-I equation", "authors": [ "B. Dubrovin", "T. Grava", "C. Klein" ], "comment": "32 pages, 10 figures", "categories": [ "math.AP", "math-ph", "math.MP" ], "abstract": "We argue that the critical behaviour near the point of ``gradient catastrophe\" of the solution to the Cauchy problem for the focusing nonlinear Schr\\\"odinger equation $ i\\epsilon \\psi_t +\\frac{\\epsilon^2}2\\psi_{xx}+ |\\psi|^2 \\psi =0$ with analytic initial data of the form $\\psi(x,0;\\epsilon) =A(x) e^{\\frac{i}{\\epsilon} S(x)}$ is approximately described by a particular solution to the Painlev\\'e-I equation.", "revisions": [ { "version": "v3", "updated": "2007-05-15T18:18:55.000Z" } ], "analyses": { "keywords": [ "focusing nonlinear schrödinger equation", "elliptic umbilic catastrophe", "critical behaviour", "painlevé-i equation", "tritronquée" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0704.0501D" } } }